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ON MULTIVARIATE LAGRANGE INTERPOLATION 

THOMAS SAUER AND YUAN XU 

ABSTRACT. Lagrange interpolation by polynomials in several variables is stud- 
ied through a finite difference approach. We establish an interpolation formula 
analogous to that of Newton and a remainder formula, both of them in terms 
of finite differences. We prove that the finite difference admits an integral rep- 
resentation involving simplex spline functions. In particular, this provides a 
remainder formula for Lagrange interpolation of degree n of a function f 
which is a sum of integrals of certain (n + 1)st directional derivatives of f 
multiplied by simplex spline functions. We also provide two algorithms for the 
computation of Lagrange interpolants which use only addition, scalar multipli- 
cation, and point evaluation of polynomials. 

1. INTRODUCTION 

Let nd be the space of all polynomials in d variables, and let nd be the 
subspace of polynomials of total degree at most n. For a sequence of pairwise 
distinct points in Rd, denoted by 2, we say that the associated Lagrange 
interpolation problem is poised for a subspace TTd C FId, if for any f defined 
on Rd there exists a unique polynomial Pf E nd which matches f on 2. 

It is well known that there are essential difficulties in solving Lagrange inter- 
polation by polynomials in several variables. First of all, there is the problem of 
choosing the right polynomial subspace, for there are many linearly independent 
polynomials of the same total degree. Secondly, and much more troublesome, 
the uniqueness of interpolation depends on the geometric configuration of the 
interpolation points. Thus, for example, if 121 = dimIld, then the Lagrange 
interpolation problem is poised if, and only if, the node sequence t does not 
lie on a hypersurface of degree n; i.e., there does not exist a polynomial in Ild 
which vanishes on all of the nodes; equivalently, the Vandermonde determinant 
formed by the interpolation points does not vanish. Thirdly, even if the inter- 
polation problem is poised, the computation of the interpolating polynomial 
can be difficult and there is no known formula for the remainder term in the 
general case. 
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One should mention that there have been various efforts to overcome at least 
some of these difficulties. One approach is to put conditions on the location 
of nodes to guarantee both the uniqueness of the interpolation and a simple 
construction of the interpolating polynomials. However, such conditions are 
usually too restrictive and difficult to fulfill and apply. After all, the set of 
nodes for which Lagrange interpolation is not unique has measure zero, and 
interpolation is almost always possible; for literature and a historical account 
we refer to the recent survey [2] and the monograph [4], the latter one also 
containing a particularly extensive bibliography. Recently, a very interesting 
approach has been given by de Boor and Ron (see [ 1 ] and the references therein). 
They showed that for any given 2' there always exists a particular polynomial 
subspace FI-d for which the corresponding Lagrange interpolation problem is 
poised. In addition tG an extensive investigation of the theoretic aspect of their 
approach, they also provide an algorithm for the computation of the interpolant. 

In this paper, we shall take a different approach, which turns out to be sur- 
prisingly close to the classical univariate one. The starting point for our inves- 
tigation is the realization that the multivariate problem analogous to univariate 
interpolation is what we will refer to as interpolation in block, meaning that the 
total number of interpolation nodes is equal to dim FI and the interpolation 
points are grouped in blocks whose cardinality is equal to the dimension of the 
polynomial subspaces. This viewpoint allows us to develop a finite difference 
approach to Lagrange interpolation that offers formulae very much comparable 
to the classical univariate ones. Our finite differences in several variables are 
defined by a recurrence relation and lead to a Newton formula for Lagrange 
interpolation that allows us to compute just several additional terms for each 
block of interpolation points added. But perhaps even more important is the 
representation of an nth-order finite difference in terms of a sum of integrals 
of n-fold directional derivatives of f multiplied by simplex splines, which is 
analogous to the B-spline representation of the univariate divided difference. 
This representation leads to an elegant remainder formula for Lagrange inter- 
polation, and for d = 1 this formula coincides with the well-known univariate 
one. 

The usual representation of the interpolation polynomials is given through the 
Lagrange fundamental polynomials which are one in one of the points and zero 
in all the other ones. Our finite difference approach, however, will use a different 
basis of polynomials, which we will call Newton fundamental polynomials. The 
name is justified by the fact that these polynomials and the associated finite 
differences give a multivariate analog of the univariate Newton formula. Both 
polynomial bases can be given in terms of Vandermonde determinants, but for 
computational purposes determinants can be difficult to handle and are known 
to be highly unstable. As an alternative, we provide two algorithms which seem 
to be of independent interest; these algorithms only use the natural operations 
on polynomials, i.e., addition, multiplication with scalars and point evaluation. 
The first algorithm computes the Lagrange fundamental polynomials and stops 
if the Lagrange interpolation problem is not poised; the second one determines 
the Newton fundamental polynomials if the interpolation problem is poised, or 
it gives an algebraic surface of minimal degree which vanishes on all the nodes. 

The paper is organized as follows. In ?2, we give the necessary preliminar- 
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ies. The finite difference approach to interpolation is contained in ?3, and the 
algorithms are given in ?4. Finally, in ?5, we provide an example in R2 which 
is analogous to equidistant points in one variable. 

2. PRELIMINARIES 

We use standard multi-index notation. For example, for a = (a, aI* , ad) E 

Nd we write tal = a + *+ ad, and for x E Rd we write x= ('r, ... 4 d) 

and Xa = .a. l*ad .For each n E No there are rd = (n+d-1) monomials Xa 

which have total degree n . A natural basis for nd is formed by the monomials 
{Xa : 0 < jai < n}. 

Let ?' = {X0, xI, ... } be a sequence of pairwise distinct points in Rd, and 
let 2N= {xo, ..., XN}. If N =dimF1d , and if there is a unique polynomial 
P E rd such that 

(2.1) P(xk)=P(xk), l< k<N, 

for any f: Rd X-4 R, then we say that the Lagrange interpolation problem 
(2.1) is poised with respect to 2N in HInd, and we denote P by Ln (f) . More 
general, given N points, not necessarily N = dim I-d for some n, and a 
subspace AA C nd, we say that the Lagrange interpolation problem is poised 
with respect to 2?N in [Id if for any f: Rd -+ R there is a unique polynomial 
P E nd such that (2.1) is satisfied. From Kergin interpolation we know that 
for any choice of pairwise disjoint points xI, ..., XN there always exists (at 
least) one subspace H A c r N_ for which the interpolation problem with 
respect to 2N is poised; in other words: given any sequence of nodes we can 
find a subspace of rjd for which the Lagrange interpolation problem is poised. 
Finally, we call the (possibly infinite) sequence 2' poised in block, if for any 
n E N0 the Lagrange interpolation problem is poised with respect to 2'N in 
nH, whenever N = dim fdI. 

We start from the observation that multivariate monomials are naturally 
grouped in blocks; i.e., instead of a single monomial of degree n in one vari- 
able, we have a whole block of monomials of degree n in several variables, 
namely, the monomials x't, lal = n. If we arrange the multi-indices lal = n 
in lexicographical order, we can number the monomials of total degree n as 
qfl , ..., q. '], and qd is spanned by 

{q[?]| q[] q[] | [21 q[2] 1 [n] [n] } { 2... fld I d.,qd 

From this blockwise viewpoint, it is only natural to group the interpolation 
points t according to the same structure and rewrite them as 

t - I (?t ( 1) ( 1) (2) (2) (n) i(n) l -J X Wt Xl l *- I XI ,d *- -X ... IX Xld ... , I X I .. d - 

We refer to Lagrange interpolation with 2' arranged in this way as interpolation 
in block. As a by-product of Algorithm 4.4 we will show that, whenever 2 is 
poised in block, the points xI , x2, ... can be arranged in such a way. 
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If 2' is poised in block, the nth Newton fundamental polynomials, denoted 
by pjn] E Ilfd, 1 < i < rnd, are uniquely defined by the conditions 

(2.2) p[n](x(k))=0, k<n, and pn](p))= j,j i= 1,... ,r. 

This means that for each level n there are rnd Newton fundamental polynomials 
of degree exactly n which vanish on all points of lower level and all points of the 
nth level except the one which has the same index. Actually, these polynomials 
can be given explicitly as follows. We introduce the vectors 

pn(X) =[Xa]1c1?n, pn(X) E R N N = dim Irj 

and the Vandermonde determinant 

T(pn) := det pn (X(?)) pn (X(1)) pn (X(1)) pn(x(n)), pn(x(n))4 
which is nonzero if and only if the interpolation problem is poised; likewise, 

Tj (pnIX) := det [n (x(?) ..,p(() nX(n )pn 
p 

n ((n),) *S pn (X 
)]n 

d 

for 1 < rnd . Then it can be easily verified that the polynomials p5n] are 
equal to 

n _Tj (pnI x)d (2.3) p51(x) - ' drnd 

With the help of the Newton fundamental polynomials we can also deal with 
interpolation problems based on 2N for N < dim lH. The point is that we 
can consider the polynomial subspace rIr = FI' du W, where W is spanned 
by some of the pin] such that dim HI = N. We only consider interpolation of 
this type in our first algorithm, and the choice of pnlI will become clear from 
the algorithm. 

Next we recall the definition and some properties of simplex splines, fol- 
lowing the fundamental paper of Micchelli [5]. Given n + 1 > d + 1 knots 
V .. , v n E Rd, the simplex spline M(xIv, .I . ., v n) is defined by the condi- 
tion 

(2.4) Jf(x) M(X IV , vn) dx 

=(n-d)! f(aov0 +... + anvn)da, f E C(Rd), 

where 
Sn = { = (f0 *** ffan) ai >0 O 0+***+0n =l1}- 

To exclude cases of degeneration which can be handled similarly, let us assume 
here that the convex hull of the knots, [v?, ... , vn], has dimension d. Then 
the simplex spline M(.1v0, ... , n) is a nonnegative piecewise polynomial of 
degree n - d, supported on [vo, ..., v n]. The order of differentiability de- 
pends on the position of the knots; if, e.g., the knots are in general position, 
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i.e., any subset of d + 1 knots spans a proper simplex, then the simplex spline 
has maximal order of differentiability, namely n - d - 1 . The most important 
property for our present purposes is the formula for directional derivatives, 
namely 

(2.5) 
n 

DyM(xlv, * , vn) = ZjM(XIVO vj-v1 Vj+1 Vn), 

j=O 
n n 

y = ujvi, ,Uj = O. 
j=O j=0 

In particular, for 0 < i, j < n, 

(2.6) 
Dvi_vjM(xlv ? ......, v) =M(xlv ? - V i - vi+ ...... 

0 -M(1? .... 
Vil j+l . .... n). 

3. FINITE DIFFERENCES AND THE NEWTON FORMULA 

Let c c Rd be poised in block. To simplify the notation, we introduce the 
vectors 

xn =[x(n),. ..,xd)] and x = x , x 

-Our definition of finite difference is given as follows: 

Definition 3.1. The finite difference in Rd, denoted by 

An[X *** x n-I ~x]f x ER d 

is defined recursively as 

(3.1) Ao[x]f :=f (x) 

(3.2) 
An+ I [x0, .. ., Ixn, x] :=An [X?. . ., nI 1, x] 

rd 

i=An[XO, ..., xn-I Xn) ]f *Pn (x). 

If d = 1, and if we assume that our interpolation points are ordered as 
xo < xi < < xn E R, then for each fixed n there is only one fundamental 
polynomial, given by 

(3.3) []X 
X -X )..( n 1 

Pi 
(Xn - XO) (Xn -Xn-1 ) 

Let f[xo, .. , xn] be the classical divided difference of a function of one vari- 
able; then it can be easily verified from Definition 3.1 that our finite difference 
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in one variable equals 

(3.4) An [XO ** ..., Xn]f = f[XO,** Xn] * (Xn- XO) ... (Xn -Xn-13, 

which suggests the name finite difference. The definition of this new difference 
is justified by several nice properties that we present below. 

Proposition 3.2. For every f: Rd* R, n E N, and 1 < k <rn 

d 

(3.5) f(Xk)= ...I, , Xk 
j=0 i=l 

Proof Using the fact that p17n](X4n)) = 5k and applying (3.2) repeatedly, we 
obtain 

nrd 

ASn[X 
0 ...,xn 1,Xi)]* ] (X ) ) = ASn[X0, ...,Xn- , X( ) ]f 

i=1 -A 0 n-3 (n) [x X jr -2 (n-j)]f + n-](X(n)) 
n-1[X, ...,X Xk JJ- n-lX,...,XJPI kJ 

j=n-2 i=1 

n-I d 
=-AO[ rn] ?j n-3 (n)1 { xv i 

IA fr ? - () [ (n)) - n-2LX, ....., ]fXkJ - ZL[jX0, ................ , X, XE'] .pJJ*I(4fl)) 
1=0~ ~~j=- i=l 

n-i k 
j=0 i=l 

n-I jy 

=-f(x()- EAjx,... i,Xi ]f*P~il (X )) 

j=O i=lI 

from which (3.5) follows readily. o 

As an immediate consequence of this proposition we obtain in analogy to the 
Newton formula for Lagrange interpolation: 

Theorem 3.3. Let the interpolation problem (2.1), based on the points x?, ... , Xn, 
be poised. Then the Lagrange interpolation polynomial Ln(f) E Hd is given by 

n rjd 

(3.6) Ln(f, x) = ZZ i[x0, x.., ,xi) Ifpi[i(X). 
j=0 i=1 
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For d = 1, it follows from (3.3) and (3.4) that formula (3.6) becomes 

n 

Ln(f, X) = Z Ji[XO, ... , xI]f p P'(X) 
i=O 
n 

=E f[xo,.., Xi] * (X - xo) ... (X - Xi-,), 
i=O 

which is the classical Newton formula. Moreover, this notion of the finite 
difference also leads to the following remainder formula for interpolating poly- 
nomials: 

Theorem 3.4. For each f: Rd -* R and n E N 

(3-7) f(x) -Ln(f, x) = ASn+I[X 0~ ... ., xn . x]f. 

Proof. Starting with (3.6) and using (3.2) repeatedly, we obtain 

n rd 

f(x) - Ln(f, x) = f(x)- ZZ [x?, .-. . , xj- I 
X)y f Pi (x) 

j=O i=l 

n r,r 

= R[x]f - Ao[x1?] *I[]x jX,...,x-,x()f*p[]x 
j=l i=l 

n d 

= A1[x0, x]f - E E [x ]. .,xi- , xif *p] x 
j=1 i=1 

I 

= A1[X0, x]f - LA, [Xo , XP()]f *P [l](X 

d 
n rid 

- EZ AZ[xo, . . . , X ,x]fp(X) 
j=2 i=l 

n rid 

2[x0, x1, x]f- A[X0, . . If p(X) 
j=2 i=l 

rnd 

= n[X 0 Xn-l x]f- AZn[X0 xn1, ,Xn) If Pi (X) 
i=l 

=-An+I[x0,... ,xn,x]f. o 

Since Ln (f , x) interpolates f at all points of level < n, as a consequence of 
this theorem we obtain 
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Corollary 3.5. For every f: Rd d* R and n E N 

An+I[X0,.., Xn, X(k)]f = 0, j = d k = O~ . n. 

Next we shall establish a representation of our finite difference in terms of 
simplex splines, which requires some additional notation. Let 

An {i=(U0o ,**, n)EN n+ : 1I < rd i=O,...,n} 

be an index set. Each Eu C An defines a path among the components of 
x?,., xn which we denote by xy, 

*-U {= X/o *- XAn }- 

We note that gu0 = 1 by definition; thus, the path described by xM starts from 
(0) ) n 1 x() passes through x(, ..., I (I I ), and ends at x(. One example of the 

path for d = 2 is depicted in Fig. 1. 

X(3) 

(2) X1 

) X2)(1) (3) 

x x~~x1x 

1(O \,X2(2). / 

X \ 
(3) x2 x3 

(2) 
x3 

(3) x4 

FIGURE 1. The path i = (1, 1, 3, 2). Points of the same level 
are aligned in columns 

The collection {x8: ,u E An} contains all paths from the sole point x() of 
level 0 to all the points of level n. For any path x8,, j E An, we define the 
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nth directional derivative along that path as 

Dn,,#: D in ) -lD I l-xn2) 'D (i)-x? (0 E An 
Mn n-I l -A-2 AO 

In addition, we will need the values 
n-i 

7r'U(XY) : = tpi, (i+, 1)) e An- 
i=O 

We are now able to state the representation of our finite difference in terms 
of simplex splines and directional derivatives. 

Theorem 3.6. Let f E Cn+1 (Rd). Then 

(3.8) 

+ In x x]f 
E 

p[n](x)7r,(xy) D _x(n)Dnuf(y)M(yIx'1, x)dy. 
EAs Rd An 

In order to prove this theorem, we need to state and prove two preparatory 
results first: 

Lemma 3.7. Let the Lagrange interpolation problem be poised with respect to 
2aN,s N-= dimlln, and let i be a fixed integer such that 1 < i < rnd. Then 
there exist d indices k,, ... , kd such that the vectors 

p!n-l]( (n)) ((n) -X(n- I)) j =, ^.,d, p1 XkyX?k -i , 

are nonzero and linearly independent. 

Proof. Without loss of generality we can assume that kj = j, 1 i < d, and 
that the points are rearranged so that 

[!n-l]( (n))1 ? :A0 <j<~ r <rnd, Pi x 0l= , r< j <rnd. 

Assume that 
rank [xn)-x(n )]1 < d; 

i.e., the points x(n- )I x(n), ... , x(n) lie on an affine hyperplane of dimension 
< d - 1 . Then, there is a nonzero affine function e such that 

e (x ) ) = e=(X(n )- =. * (X(nx) = 0. 

Since p1n-1 vanishes at all points of level < n - 1, except at x(n-1, and at 
.(n) x(n), j = r + 1, ... , rd, it is easy to verify that the nonzero polynomial 

pn -l](x) . e(X) e rd 

vanishes at all points of level < n . But this contradicts the assumption that the 
interpolation problem is poised with respect to 25N. ? 

As an immediate consequence of this lemma we obtain the following corol- 
lary, which is of independent interest in itself. 
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Corollary 3.8. Let the Lagrange interpolation problem be poised with respect to 
N, N =dim I-i. Then every convex hull 

r(n- 1) (n) (n) i1 rd 
Li xlXI .. ,xd - * n1 

has dimension d. 

This corollary provides a necessary condition for the uniqueness of Lagrange 
interpolation in block. The condition can be seen as an extension of the univari- 
ate requirement that the points have to be distinct. The main technical lemma 
for the proof of Theorem 3.6 is the following 

Lemma 3.9. Let the Lagrange interpolation problem be poised with respect to 
4, N=dimndn . Then for I < i < rd_L and x E Rd 

(3.9) pg "(x) (x - x( 1) = E p[.nJ(X)p[n~l](X(n)) (X(n) (-I) 

Proof: Let i and x be fixed. We choose d indices k1 as in Lemma 3.7 and 
again assume that k,-j= . We consider the linear system of equations 

d 

(3.9 10 nljx) , ap-o l] (x ()~n1(n)) (n)-Xn l x(n 1 

j=l 

where 

(3.1 1) 

d~~~~~r 

y =p3(x) (x x(n-1)) -E p]()pl(n- )) (X(n) - Xn1)) 
j=d+1 

Clearly, (3.9) holds if and only if a1 = pJn](X), j - 1, ... , d, forms a solution 
of (3.10). From Lemma 3.7 it follows that 

0 $ A-=det [p(n-1](x(n) ) (x(n) - x~n1))] d 

- ( dI[ ](()) * det [x(n.1) x(n) x( ) 

To simplify the notation, we define 

d 

[n-~ ~~r Itn p-o (x(n) (n (n 1 sd 

1=1,#17b 

we also introduce the notation 

z(X) := det [ p(n-1) x(n) II( 
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and 

Tj(Xlx) :=det [(n-1) (n) (n) (n) (n) 1 j<d. 

In particular, we have 

(3.12) 'A -Yp[n-fl(x(n))z(X), j=1,... , d. 

Since yj 5$ 0, which follows from A 5$ 0, we can apply Cramer's rule on (3.10) 
and, replacing y by (3.11), we obtain for 1 < j < d 

rd 

yj {p5 ]x)ryX|x) E P[n](X)P[n-I](X(n)) (xlX(n)) 
I=d+1 

aj = 

( ()X 

] 

pJT(X) 
That is, rearranging terms, 

(3.13) 
rd 

ajpn-l]( (n))Tx + [n](X)p[n-I](X(n) r(X,X(n)) =p[n-l()jx) 

I=d+1 

We now consider the two polynomials 

d 

qi(x) :p[n](X)p[n-l]( (nx))T(X) + EpnI(X)p[n ](X(n )Tj(X| 
n) 

I=d+1 

q2(X) [n-(X)T(xlX) 

both of them belonging to FI-d. Notice that q1 is the left-hand side of (3.13), 
and that q2 is the right-hand side of (3.13). It can now be easily verified that 
these two polynomials coincide on all points of level < n, that is, 

ql(z) = q2 (Z) , Z = XIO) d 

Hence, owing to the uniqueness of the interpolation polynomial, q1 and q2 are 
identical. Therefore, for any x E R d, the choice aj= p[n](x), j =1,...,r, 
is a solution of (3.10). This concludes the proof. o 

It may be of some interest to mention that the quotients rj(XIx)/T(X), 
j = 1, ..., d, appearing in the proof, are the barycentric coordinates of x 

with respect to the simplex x ..., x )], i.e., 

o Ta(Xp o to pr TT(Xeo) rXmn 3 

We are now in a position to prove Theorem 3.6. 
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Proof of Theorem 3.6. We use induction on n . For n = 0 the equation (3.8) 
states 

f(x) = L f(y)M(ylx)dy, 
Rd 

which is nothing but the definition of the simplex spline M(.jx) in the distri- 
butional sense. 

For n > 0, by the induction hypothesis, we can write 

(3.14) 
An [Xo xn- I, x]f 

Z nn l(X)7,(X) D 7n-,)Dn-i f(y)M(yjx', x)dy. 
#E An-I 

Using Lemma 3.9 and recalling the linearity of directional derivatives, we have 

rnd 

p[n-lll(x)Dx-t-l E p[;n,(X)p[n-,ll(p))D (n)-xn l) Pg-1 X(n-1)= I- i I _)D .,n) -~ 
i=l 

Hence, the right-hand side of (3.14) reads 

(3.15) 
d 

rn 

E LP!n (X)p[n-,,(Xi )7r',(X,) D D(n)_X'(n-I)Dx,u tf(Y)M(YjXA', x)dy. 
kLEAn-I i=1 Jd -In--I 

By the recurrence relation (3.2) and the induction hypothesis, equation (3.15) 
yields 

A 0 n 0r> n-l An+ i[X X * X, XJ -nZ (XXx, ..., x , xJ] 
d 

- Z ~~~-p[flJ(x)pn[X... nll(sxZ f)7(x) 
~~tEA~, i=i= 

rdn ^~~~r 

UfAn-l~~~~ i=l[x,- X P 

rnd 

- Z S D_P!n,(X)p[n D(Xn ) If(y)M 

unx X xn)xn->x (M(YIx" , x) -M(y-xDx)dy 

/IEAn-I~~~~~R i=/1- 

rdnr 

L EP!n(x )p[n- i ](x(n) 7r',(Xul) 
Dxn_(- X () 

#EAn_ I i=1I 

nxi(yM(yjxA, )-(n) 8 i())d 
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Applying the differentiation rule for simplex splines (2.6), we have 

A,+I [x 0 . ,xn , x1f 

rnd 

P!n,(X)p[n-1](X(n))7rX8 

'IEA,-1 i=1 

x JD x(n) _x1un l)D 
n-I 

f(y)D (n)_ M(ylxy, x)dy 

Z 
n 

j(x)7r(xI) f Dx x(n) Dnf(y)M(yIX'u, x)dy; 

the final step follows from replacing i by /un and from integration by parts, 
which reads 

Ld 
f(y)Dvg(y)dy 

= 
Vi Z v L (y)ja-g(y)dy 

vi -f(y)g(y)dy 

= - L Dvf(y)g(y)dy, 

where g is a function with compact support. ci 

Defining An(k) = {1u E An : lun = k}, k = 1, ...,rn, we obtain a remark- 
able compact version of Theorem 3.6: 

Corollary 3.10. For n E N and f E Cn+I (Rd) 

(3.16) 
An [x?,.. xn-I , x(W)] 

k~~~~~~~~ 

)= Dnr(xi() j D ff(y)M(yxi)dy, k 1d. 
8EAn (k) rkE 

For eo E ,n (k)w, the sequence xy is a path from x(o) to ( ), and the set 

{XY:, E An(k)} contains all paths from x(? to Xk). Combining Theorem 
3.4 and Theorem 3.6 gives a remainder formula for Lagrange interpolation: 

Corollary 3.1 1. For n E N and f E Cn+ I 
(Rd ) 

(3.17) 

Ln(fS x)f(x)= Ep[n](X)7l,(XuX) tD D-(n)Dn/ f(y)M(yxIvu, x)dy 

Moreover, we have the error estimate 

(3.18) 

ILn (f, x) -f(x) < (I+ l) !lDxx(n)DxfI I*i(x8)pnf(x), X E R 

where it suffices to take the supremum norm over the convex hull of {xo,.... 
xn x}. 
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To end this section, let us take d = 1 in (3.18). We first compute iy,(x'), 
using the same notation as in the univariate case considered before (for d = I 
there is only a single path), 

n-I 

28(X8)= fJpi(Xi+ ) 
i=O 

n-I 
(xi+ I- XO) * * * (xi+ I- xi- 0 

i=0 (Xi-xo) 
... 

(Xi-Xi-,) 

1 2- (X3 - XO)(X3 - XI) (Xn - XO) (Xn - Xn-2) 
X1-Xo (X2-XO)(X2-X1) (Xn-I-Xo) *.* (Xn-I-Xn-2) 

Xn - Xi 

;= -'jXi+ 1 - XiX 

On the other hand, we clearly have 

n-I 

Dx-xnDx -xn_ I... Dxl -xo f(y) = (x- xn) fJ (xi+ I1Xi)f(n+ 1-) (y3 

i=O 

Inserting this into (3.18),- we thus obtain 

n-I 
ILn(f, X)-f(x)I (n+1)! Ix -n 7J(xi+1 * Ilf(n+ill 

n-2 
Xn -xi (x -xo ) (x -Xn -1l)| 

Vi Xi+1 -Xi J(Xn- Xo) ... (Xn -Xn-1 ) 

i=O~~~i= 

=(n 1)! I(x-xo) ... (x - xn) 

which is the well-known estimate for one variable. This shows that (3.18) is a 
proper extension of the univariate formula, and it offers another justification 
for our definition of finite difference. 

4. ALGORITHMS 

In this section let X = {xl, ..., XN}, N E N, be a finite sequence of 
pairwise distinct points and assume that N = dim 11d for some n > 0. 

In our algorithms we will use the following notation: let an, ...n, a! be 
the multi-indices lal = n, arranged in lexicographical order. Moreover, by 
Cfl, ... aN we denote the ordering alI, a!2 *n ad * 1 Qrl *,(d d'The 

pseudocode that we will use to formulate the algorithms uses while do ... 
done; and for do ... done; loops (the latter one may be ascending or descending; 
this will become clear from the argument) as well as the if then ... fi; construc- 
tion. 

Our first goal is to give an algorithm for the computation of the Lagrange 
fundamental polynomials Pi, ... , PN E nd; i.e., the polynomials which satisfy 
the conditions Pi(xj) = ij i, j I= ,..., N. 
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The basic idea is to successively construct polynomials pk]., plk] for 
k = 1, ... N, which satisfy 

(4.1) p[k](x) = ij, i, j = , ...,k < N. 

This is trivial for k = 1 since we can take Pll(x) 1. Thus, suppose 
we already constructed p[kI,..., p1k] for some k > 1. It is obvious from 
(4.1) that these polynomials are linearly independent and span a k-dimensional 
subspace of Il. Thus, we can find polynomials Qk+ i, QN such that 

pk ]... pl1k, Qk+l, ..., QN form a basis of nd; moreover, we can assume 
that 

(4.2) Qk+1(X) ==QN(X)=O, X E {X1,* ,Xk}, 

since otherwise we can replace Qj (x) by 

k 

(4.3) QJ5(x) = Qj(X) - ( 
i=l1 

Next, we claim that either there exists some E e {k + 1, ..., N} such that 

Qj (xk+ 1) 5$ 0, or the Lagrange interpolation problem is not poised with respect 
to Z. To prove this, assume that the Lagrange interpolation problem is poised 
with respect to 2' and let Q be a solution of the interpolation problem 

(4.4) Q(Xj) = 3j,k+1, j =,...,N; 

we write Q with respect to the basis defined above as 

k N 

Q(X) = E ajP k](x) + E ajQj(x). 
j=1 j=k+i 

Inserting x = xi, ..., Xk readily gives aj = 0, j = 1,..., k, which yields, 
setting x = xk+1, 

N 

1 = E ajQj(xk+l). 
j=k+i 

Hence, not all Qj, j = k + 1, ..., N, can vanish in xk+1, which proves the 
claim. Therefore, supposing poisedness, we can, without loss of generality, 
assume that Qk+ 1(Xk+1) $ 0. Setting 

pk+l](X _ Qk+l (X) 
k+il() Qk+ I (Xk+ 1) 

and 
p[k+l1(X) = pIkl(X) _ p[kl( N Dpk+ll(X-, _ i j (Xk+l k+l J ' 

we obtain the k + 1 Lagrange fundamental polynomials for xl, ...,k+ 

which completes the inductional step. 
In the end, for k = N we either generate the Lagrange fundamental poly- 

nomials with respect to t in nd or we find that the Lagrange interpolation 
problem is not poised with respect to t in Hd. 
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Instead of completing p[k],*.., p[k] to a basis of Ild in each individual kn 
step, the following algorithm simultaneously computes p[k], ..p[k], which 
are the Lagrange fundamental polynomials for the subproblem at xl, ..., xk, 
and the polynomials Qk+l, ..., QN, which vanish at xl, ... , Xk, and com- 
plete p[k],*.., p[k] to a basis of Ild for k = 1,..., N. Since for k = 0 1kn 
there is no restriction imposed on Qi, ..., QN, we can simply initialize these 
polynomials with the monomials. This reads as follows: 

Algorithm 4.1. 
Input: N E N and xl, ..., XN E Rd. 
Initialization: 

for k = 1 , 2, ...,N do 
Qk := XCk; 

done; 
Computation: 

for k= 1, 2, ...N do 
i:=min({k<j <N: Qj(xk) 5 0}U{N+ 1}); 
if i = N + 1 then stop: No unique interpolation; fi; 

Qi (x) 
Pk(X) Qi (Xk) 
for j= 1, 2, ..., k- 1 do 
Pi(X) Pi(X) - Pj(Xk)Pk(X); 
done; 
for j= i, i- 1,..., k + 1 do 
Qj(X) := Q - QJ(X)-Qj-1(Xk)Pk(X); 
done; 
for j= i+ 1, i+2, ..., Ndo 
Qj(X) := Q;(X) - Qj(Xk)Pk(X); 
done; 

done; 
Output: Pi, ., PN E nIn 

The algorithm may also be seen from a different point of view: the polyno- 
mials SD = {P1, ... , Pk }, constructed in the kth step of the algorithm, are an 
orthonormal basis with respect to the scalar product 

k 

(p, q)k = Ep(xj) q(xj), 
j=1 

while Qk+ ..., QN form a basis of the orthogonal complement of the span 
of SD in FI-d. From this viewpoint Algorithm 4.1 is a variation of the Gram- 
Schmidt orthogonalization process. 

If Algorithm 4.1 ends with stop, then the interpolation problem is not poised; 
otherwise, we say that the algorithm terminates properly. From the deduction 
of Algorithm 4.1 we finally formalize what the algorithm does as follows: 

Proposition 4.2. The Lagrange interpolation problem with respect to Z is poised 
in -d if and only if Algorithm 4.1 terminates properly. 
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The basic idea is to successively construct polynomials plk1, .., pDk] for 
k = , ...,N, which satisfy 

(4.1) ~~p[k](X.) = 6j, i, j= I, ...,9 k <N. 

This is trivial for k = 1 since we can take P1 =(x) 1 Thus, suppose 
we already constructed p[k], p1... k] for some k > 1. It is obvious from 
(4.1) that these polynomials are linearly independent and span a k-dimensional 
subspace of Id. Thus, we can find polynomials Qk+l, .., QN such that 
p1k], *.., p1k ] Qk+1, *.., QN form a basis of nId; moreover, we can assume 
that 

(4.2) Qk+?(X) = = QN(X)=O, X E {X1, ... , Xk} 

since otherwise we can replace Qj(x) by 

k 

(4.3)~~ ~ (X j()E Q;j(Xi)p! kl (X). (4.3) ~~~Q5'(x) = Q1 (x) - 

i=l 

Next, we claim that either there exists some j E {k + 1, ..., N} such that 
Qj(xk+, ) $ 0, or the Lagrange interpolation problem is not poised with respect 
to 2 . To prove this, assume that the Lagrange interpolation problem is poised 
with respect to 2' and let Q be a solution of the interpolation problem 

(4.4) Q(xi) = 3j,k+ , j =, ...,N; 

we write Q with respect to the basis defined above as 

k N 

Q(x) =Eaj p!k ](x) + EajQj (x). 
j=1 j=k+i 

Inserting x = xl, ..., Xk readily gives aj = 0, 1, ..., k, which yields, 
setting x = xk+l, 

N 

1 = E ajQi(xk+ 1). 

j=k+ i 

Hence, not all Qj, j = k + 1, ... , N, can vanish in Xk+l, which proves the 
claim. Therefore, supposing poisedness, we can, without loss of generality, 
assume that Qk+I (Xk+1) $ 0. Setting 

jp[k+1](x) _ 
Qk+1 

(X) 
k+1 Qk+1(Xk+1) 

and 
p[k+l1(X) p-kPkl,(X) pkl, (xk+)p[k+ljl(x), j = 1... kg j tX jt} j vX+Jk+l1X, J- ,** 

we obtain the k + 1 Lagrange fundamental polynomials for xl, ..., Xk+ 
which completes the inductional step. 

In the end, for k = N we either generate the Lagrange fundamental poly- 
nomials with respect to 2' in H5d or we find that the Lagrange interpolation 
problem is not poised with respect to 2' in H5. 
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Instead of completing p[k], ., p[k] to a basis of 17d in each individual 
step, the following algorithm simultaneously computes p[k], p1... pk], which 
are the Lagrange fundamental polynomials for the subproblem at xl, ..., xk, 
and the polynomials Qk+l, ... QN, which vanish at xl, ..., Xk, and com- 
plete p[k],*.., p[k] to a basis of Ild for k = 1,..., N. Since for k = 0 kn 
there is no restriction imposed on Qi, ... , QN, we can simply initialize these 
polynomials with the monomials. This reads as follows: 

Algorithm 4.1. 
Input: N e N and xl, ...,XN E Rd. 
Initialization: 

for k=1, 2,...,N do 
Qk := XCk; 

done; 
Computation: 

for k= 1, 2, ... N do 
i := min({k < j < N: Qj(xk) 5 O} U{N + 1}); 
if i = N + 1 then stop: No unique interpolation; fi; 

Q1i(x) 
Pk(x) Qi (Xk) 
for j= 1, 2, ..., k- 1 do 
Pi(X) Pi(X) - Pj(Xk)Pk(X); 
done; 
for j= i, i- 1, ..., k+ 1 do 
Qj(X) := Qj- Q (X)-Qj-1(Xk)Pk(X); 
done; 
for j= i+ 1, i+2, ..., Ndo 

Qj (X) =Qj (X) - Qj (xk)Pk (x); 
done; 

done; 
Output: Pl, .., PN E Ildn 

The algorithm may also be seen from a different point of view: the polyno- 
mials SD = {P1, ... , Pk}, constructed in the kth step of the algorithm, are an 
orthonormal basis with respect to the scalar product 

k 

(p, q)k = Zp(xj) q(xj), 
j=1 

while Qk+l, ... QN form a basis of the orthogonal complement of the span 
of SD in F5d . From this viewpoint Algorithm 4.1 is a variation of the Gram- 
Schmidt orthogonalization process. 

If Algorithm 4.1 ends with stop, then the interpolation problem is not poised; 
otherwise, we say that the algorithm terminates properly. From the deduction 
of Algorithm 4.1 we finally formalize what the algorithm does as follows: 

Proposition 4.2. The Lagrange interpolation problem with respect to Z is poised 
in I-d if, and only if, Algorithm 4.1 terminates properly. 
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Let us remark that Algorithm 4.1 also works if N < M:= dim nId . Clearly, 
the Lagrange interpolation problem with respect to 5' cannot be poised in F5nd 
if N < M, but we can run the algorithm to compute Lagrange fundamental 
polynomials P1, ... , PN as before; these polynomials then span a subspace 
Td c Id for which any interpolation problem at J' is uniquely solvable. On n 

the other hand, it is also easily verified that, whenever the algorithm does not 
terminate properly, the Lagrange interpolation problem at 2' is unsolvable in 
general. 

Next we make some remarks on the algorithm and introduce some possible 
improvements. 

Remark 4.3. 
(1) This algorithm does not require solving systems of linear equations or 

computing Vandermonde determinants. It uses only the natural opera- 
tions on polynomials; i.e., addition, multiplication by scalars and point 
evaluation. 

(2) Owing to its simplicity, the algorithm is easy to implement and, moreover, 
very fast. For example, interpolation with polynomials of degree 13 
at 100 random points in [0, 1]2 takes less than 3 seconds in a C++ 
implementation on a SUN SparcStation 10. 

(3) From Kergin interpolation we know that there always exists a subspace 
Td c idNl such that the Lagrange interpolation problem with respect 

to 2' is poised in fl This suggests the following improvement of 
Algorithm 4.1: whenever it turns out that the Lagrange interpolation 
problem with respect to 2' is not poised in jd, then try the same 
process in jd+l; if in this space the Lagrange interpolation problem 
with respect to 2' is still not poised, then proceed to nf+2 and so on; 
the above remark guarantees success after a finite number of steps. To be 
precise, we modify Algorithm 4.1 as follows, replacing the stop statement 
by the while loop below: 
Initialization: 

M:= N; 

Computation: 
for k= 1, 2, ...,N do 

i:= min({k ?<j < M: Qj(Xk) $ 0} U {M + 1}); 
while i = M + 1 do 

for j= 1,..., rd+ do 
knn+ 

QM+j(X) := X - xiZ7 Pi(x); 
1=1 

done; 
M := dim lld+l 

n := n + 1 ; 
i:=min({k < j < M: Qi(xj) $ 0}U{M+ 1}); 

done; 

The resulting polynomials PI, . . . , PN then span a subspace of ri- 1 for 
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which the Lagrange interpolation problem is always poised with respect 
to 2. 

(4) The algorithm works with any polynomial basis {Qj: j = 1, ... , N} of 

I-in. In particular, this allows the use of the Bernstein-Bezier polynomial 
basis, which is known to be very stable. If the interpolation points lie in 
a triangular domain, numerical experiment shows that the change to the 
Bemstein-Bezier basis increases stability significantly. 

(5) Another way to obtain better stability is to use pivoting strategies when 
searching for the index i such that Qi(Xk) $ 0. In particular, two 
strategies are possible: 

* (Polynomial pivoting): Determine i such that Qi has maximal ab- 
solute value at Xk; this reads 

m:= max{IQj(xk)I: k < j < N}; 
i:= min{k < j < N: IQj(xk)l = m}; 
if Qi(xk)=0 then i:=N+I;fi; 

* (Total pivoting): Take the maximum on all polynomials Qk,..., QN 
and all points Xk, ... , XN and switch xk and the point where the 
maximum has been attained: 

m := max{lQj(xl)l: k < j, l < N}; 
(i, j) := min {(k, k) < (r, s) < (N, N) : IQr(xs)l = ml; 
x := Xk; Xk := Xi; Xi := x; 
if Qi(xk) = 0 then i:= N +1; fi; 

Numerical experiment shows that even polynomial pivoting can increase 
the stability of the algorithm significantly. In fact, the quality of interpo- 
lation, i.e., the error at the interpolation points, is usually improved by 
two decimals. 

Our second algorithm, which computes the Newton fundamental polynomi- 
als, works for interpolation in block, but it can also be used to check whether 
the points xI, ... , XN lie on an algebraic hypersurface of degree n, i.e., if 
there is some polynomial Q E -d such that Q(xl) = = Q(XN) = 0. It is 
obvious that, in this case, interpolation is not unique in rj. 

A simple but quite illustrative example for this phenomenon is d = 2, n = 3 
and six points xI, .-. , x6 lying on some circle in the plane. Since a circle is the 
zero set of some quadratic polynomial, the Lagrange interpolation problem has 
no unique solution in terms of quadratic polynomials. Nevertheless, there is a 
subspace of fl2 (i.e., of cubic polynomials) for which the Lagrange interpolation 
problem with respect to xI, ..., x6 is poised. This subspace can be given 
explicitly as follows: let ii be a nonzero linear function that vanishes on the 
edge [xi, xi+I] (setting X7 = X1 , X8 = X2, ...); then the cubic polynomial 

Qi(x) = fi+1 (x) * fi+2(x) * fi+4(X) 

vanishes in all points except xi and can thus be renormalized to obtain the 
Lagrange fundamental polynomial Pi. 

To avoid excessive notation in stating the algorithm, let us first recall the 
order of multi-indices l(l < n as (xl, ..., (kN, which we introduced at the 
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beginning of this section. We now order pairs (j, k), 1 < j 0 k O < k < n, 
in such a way that (j, k) < (i, 1) if, and only if, aj appears before ac in the 
above order of multi-indices. 

For the computation of the Newton fundamental polynomials we will modify 
Algorithm 4.1 in the following way: instead of proceeding "point by point" from 
xl to XN and find a polynomial that does not vanish at the point Xk at the 
kth step, we now do it the other way around, proceeding by polynomials and 
searching for points where the polynomials do not vanish. 

More precisely: by induction on k = ,..., n and j = 1,..., rkd, we 
construct polynomials P1[l] E rjd and points xi) E 2, (i, 1) < (j, k), and 
complementary polynomials QV1] E fld, (j, k) < (i, 1), such that 

(4.5) Pi[l](Xr(s)) = 15Islir, (r, s) < (i, I) < (j, k), 

(4.6) QIl](xrs)) = 0, (r, s) < (j, k) < (i, 1), 

and 

(4.7) ljd = span Pl]: (i, 1) < (j, k)} u {QV: (j, k) < (i, l)}) 

Initializing QVI] = xa, we start induction at j = k = 0, for which (4.5), 

(4.6) and (4.7) are satisfied trivially. For the case j = 1, k = 0 any x() E 

and P[]0 1, Qill = xa' - (x(?))' fulfill the above requirements. 
Now, suppose that for some (j, k) we have constructed polynomials of 

proper degree and points satisfying (4.5), (4.6) and (4.7). Moreover, let $/ = 
2 \ {xi() : (i, 1) < (j, k)} denote the set of points that have not yet been put 
into blocks. Assume first that j < rk . If there is no point xi+,2 E 3' such that 

Q[k] (X5k+)) $ 0, then, taking (4.6) into account, Q[k] vanishes on all of 2' 

and, therefore, the interpolation problem cannot be poised in I-I. If, on the 
other hand, the interpolation problem is poised, then we set 

p[k] ~ [k (X) j 

QJ1(j+1 k],k) 

which satisfies P[k] (X(I)) = 3k13ij whenever (i, 1) < (j + 1, k). Replacing 
PIJI1(x) by 

(4.8) ppk](x) - P[k](x5k)1 )pj[k(x), i = 1, ... , 

and Qll](x) by 

(4.9) Q[l](X) - Q[l](x5(2))P[k]'(x), (j + 1, k) < (i, 1), 

we obtain polynomials and points which can easily be seen to satisfy (4.5), 
(4.6), and (4.7) with (j, k) being replaced by (j + 1, k). This finishes the 
inductional step j -> j + 1 . It is important to notice that, in view of (4.8) and 
(4.9), we subtract a multiple of p[k] only from polynomials of level k and j+1 
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FIGURE 2. The points for cardinal interpolation of degree 5. 
Points of the same level lie on the diagonals; e.g., the bolder 
line connects all points of level 4 

We remark here that this particular Lagrange interpolation problem has been 
studied before, for example in [3]. 

For x E R2, we denote its components by u and v, i.e., x = (u, v). It is 
not hard to verify that the fundamental polynomials are given as follows 

rm-k k 

(5.1) pkm](X) = ( u-i+1)1(v-i+l), 0 <k<m, 
i= 1 i= 1 

where we define the empty product to be equal to one. From these formulae, 
one readily verifies that 

(5.2) P [m(x(m+l)) = m + 1 - k, p[l(X(m+l)) k 

and 

(5.3) [pmI(X+(l))=01 jik.k-1. 
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Moreover, if we use the notations Am and Am(k) of ?3, we have the following 

Lemma 5.1. Let Am(k) = {J E Am(k):Ui < ui+ < pui + 1}. Then 

(XY) = 0, VPu E Am(k) \ Am(k) 

and 
7c (xl)= k!(m - k)!, VuE A(k) 

Any ,u E A* (k) corresponds to a path from xO) = (0, 0) to xkm) - 

(m - k, k) which lies entirely in {O < u < m - k, 0 < v < k}, or, geomet- 
rically, a path that represents the "shortest way" from (0, 0) to (m - k, k). 
For each path in A* (k) the directional derivative Dn takes the form 

am 
(5.4) D x um-kOvk VA E Am(k). 

Therefore, in this case, we have 

Theorem 5.2. Letx = (m - k, k), 1 < k < m and m < n. If f E Cn(Sn), 
then 

(5.5) 

An [XO Xn-I X (n)]f = (n - k)!k! nX M(ylxk))dy. k ~~~aun-kaVk f(y) 2 #~~~~EA* (k) 

Moreover, 

(5.6) Aln[x0 , 
n- 

. . . ,X 
n 

]f 

a 

fnkkt(x*) X 

where x* E Sn - 

Formula (5.6) shows that for this configuration of interpolation points the 
finite difference An[x0, ... , xn-1, xn)]f is closely related to the nth partial 
derivative of f, one more reason to justify our definition. But ties are still 
closer: introducing the cardinal forward differences A(i j)f(x) by the well- 
known recurrence 

A(0'0)f(u, v) = f(u, v), 

A(i+ )f(u, V) = A(i,J)f(u + 1, V) - A(i,j)f(u, v), 

A(i j+ )f(u, v) = A(i,")f(u, v + 1) _A(iJ)f(u, v), 

we obtain 

Theorem 5.3. For any 0 < k < n 

(5.7) An[x0, .. ,xn1, xn)]f = A(n-k,k)f(O, 0). 
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Thus, if we introduce the spline function 

Mk2(x) = k!(n-k)! E M(xx8'), 
YEA* (k) 

which can be easily seen to be a piecewise polynomial of degree n - 2 supported 
on [0, n - k] x [0, k], and which is in fact a cube spline, we can combine 
(5.5) and (5.7) to identify Mkn as the Peano kernel for the forward difference. 
Precisely, for any n E N0 and 0 < i < n 

(5.8) A(n-i Of(o, 0) = L a (y)dy 

Finally, let us take the interpolation points inside the standard triangle S = 
{(u, v): u, v > 0, u + v < 1}, and give an estimate of the interpolation error. 

Corollary 5.4. Let xk =(mk n), 1< k<m and m<n, and Ln(f) be the 
Lagrange interpolation polynomials based on these points. If f E Cn (S), then 

n+1 1 0n+1 

ILn(f, x)-f (x)I ? < (n + 1-k)!k! aun+l-kavk f oo 

nI1Ik i 1 k i I 
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